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Gross—Pitaevskii and nonlinear Hartree equations are equations of nonlinear
Schrodinger type that play an important role in the theory of Bose-FEinstein
condensation. Recent results of Aschbacher et al.® demonstrate, for a class
of 3-dimensional models, that for large boson number (squared L?> norm), .4,
the ground state does not have the symmetry properties of the ground state at
small ./". We present a detailed global study of the symmetry breaking bifurca-
tion for a 1-dimensional model Gross—Pitaevskii equation, in which the external
potential (boson trap) is an attractive double-well, consisting of two attractive
Dirac delta functions concentrated at distinct points. Using dynamical systems
methods, we present a geometric analysis of the symmetry breaking bifurcation
of an asymmetric ground state and the exchange of dynamical stability from the
symmetric branch to the asymmetric branch at the bifurcation point.

KEY WORDS: Nonlinear Schrodinger equation; Bose-Einstein condensate;
standing waves; symmetry breaking; linear instability.

1. INTRODUCTION

The experimental realization of Bose—Einstein condensation has given great
impetus to the study of the Gross—Pitaevskii and nonlinear Hartree equa-
tions. These are equations of nonlinear Schrodinger (NLS) type, with a
potential having both linear and nonlinear parts. Such equations arise in
the study of large dilute systems of bosons; N-body quantum mechanics of
coupled bosons, where N tends to infinity and the coupling strength tends
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to zero.:>%19 Of fundamental interest are the properties of the ground
state of such systems. Because of the nonlinearity, the ground state can
exhibit non-trivial transitions in structure.

Indeed, that such a transition takes place was established in the recent
paper.® They consider the nonlinear Hartree energy functional

HJ[?,¥]=; JRd IVZ(0)|>+0(x) [P (X)*+g [P (01> (V * [P]*)(x) dx.
(1.1)

Here, v(x) is an external potential (the boson trap), and V' (x) is the two-
body Coulomb interaction potential V' (x)=|x|~' between bosons. The
ground state of a system of .4/ bosons is characterized by solution to the
minimization problem

inf{H,[¥,?]: |P)2 = A} (1.2)

For spatial dimensions d > 2 and the case in which g <0 is fixed, corre-
sponding to attractive interatomic forces (negative scattering length), it is
shown that for a class of potentials v(x), e.g., the double well potential,
that if 4 is sufficiently large, then symmetry breaking in the ground state
occurs, in the sense that the ground state of (1.2) does not have the same
symmetries as v(x). The proof in ref. 3 is based upon the intuition in the
double-well case, for example, that for small amplitude states (4" small)
the nonlinear potential is negligible, and therefore the ground state should
be a small distortion of the linear ground state (g =0), and have the same
symmetries as the linear ground state. However, by careful construction of
trial functions, one can see that for 4" sufficiently large, 4" > N e, it 1S
energetically preferable for the ground state to be concentrated in one well
or the other, but not equally in both.

The size of AN}, and the dynamical stability properties of the various
coexisting states (symmetric and asymmetric) is unaddressed. In this work
we address these questions in the context of the simpler model, the one-
dimensional Gross-Pitaevskii equation (GP/NLS)

W, =Y. — 21>y +ev(x) ¥ (1.3)
where v(x) denotes the attractive double well potential

o(x) = —0(x—L)—(x+L), (1.4)
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with conserved Hamiltonian energy functional

_ d 2 1
Aot 01 =[ (|2 +o0 P -3 weo)ax a9

and conserved particle (boson) number

NTY, ] =f W (x)|? . (1.6)

Symmetry breaking bifurcations have been observed in this model® and in
the analogous double square well model,!® by piecewise analytical solution
in terms of hyperbolic secant and Jacobi elliptic function solutions of the
translation invariant NLS equation (v = 0), followed by numerical solution
of the nonlinear algebraic equations resulting from the required continuity
and jump conditions at singular points of the equation’s coefficients; see
also the related work.®
We present a simple geometric analysis demonstrating

(A) the symmetry breaking of the ground state, as a bifurcation of an
asymmetric branch of solutions from the branch of symmetric solutions

and

(B) the exchange of dynamical stability from the symmetric branch to
the asymmetric branch. In particular, beyond the bifurcation point the sym-
metric state is linearly exponentially and nonlinearly unstable, whereas the
asymmetric state is nonlinearly orbitally stable.

We note that our analysis does not require the specific cubic nonlinearity
and is applicable for general local nonlinearities, where [i}|? ¥ is replaced by
F(y|» ¥, with £(-) of a general class.

A bifurcation diagram showing the various states (symmetric, anti-
symmetric, and asymmetric) is presented in Fig. 1. The solid curve corre-
sponds to the nonlinearly stable ground state. As J is increased (— A% is the
frequency) the symmetric solution becomes unstable at the bifurcation
point, while the new asymmetric state is nonlinearly stable. We expect that
anti-symmetric states (nonlinear excited states), corresponding to points on
the disconnected branch to the left of the symmetric branch, are unstable to
generic perturbations due to a nonlinear resonance phenomena, and that
for large ¢, the system’s energy resides in the ground state and radiation
modes; see, for example, refs. 18 and 19.

Finally, we wish to point out that for smooth potentials, v(x), there
exist nonlinear bound states that are concentrated at the non-degenerate
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Fig. 1. A bifurcation diagram is given for the case e = 1, L = 2. The curve on the left bifur-
cating from A" = 0 represents the antisymmetric pulse, whereas the curve on the right repre-
sents the symmetric pulse. At the threshold value A4,.,, an asymmetric pulse bifurcates from
the symmetric pulse. At .4 -levels where the asymmetric pulse is present, the symmetric pulse
is unstable.

critical points of v(x).”’ Those states that are concentrated at nondegen-
erate local minima are H' orbitally stable;"'® see Section 2.

2. OVERVIEW OF GROSS-PITAEVSKII/NLS

In Appendix A we review the well-posedness theory of (1.3) and (1.4).
The initial value problem is well-posed in C°(R'; H'(R")).

In this section we focus on nonlinear bound states of (1.3). These are
solutions of the form:

U, (x, ) =e*"Y(x; 1), el @2.1)

For the linear Schrodinger equation, the functions i are eigenstates of a
Schrédinger operator: — 9% +v(x) and satisfy the equation

—YHo(x) Y = -2 22

In the case where v(x) is given by (1.4), with L sufficiently large, the set of
bound states is two-dimensional, spanned by symmetric and antisymmetric
functions.
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For (1.3), nonlinear bound states satisfy the equation

Y H () =2 YD) Y = =27 23)

For the translation-invariant case, i.e., the autonomous case in which v =0,
there is a well-known family of solitary (‘“‘soliton”) traveling wave solu-
tions. These are Galilean boosts (see (A.2)) of the basic solitary (“soliton’)
standing wave with hyperbolic secant spatial profile. For a non-trivial
potential v(x) as in (1.4), the equation is no longer translation-invariant
and we have “defect” or “pinned” states. These pinned nonlinear bound
states are plotted in the bifurcation diagram of Fig. 1. In the translation
invariant case, v =0, the nonlinear bound states reduce to the branch of
NLS solitons, bifurcating from the zero state at zero frequency, the end-
point of the continuous spectrum of the linearized operator —d2> about the
zero state. For v(x) nontrivial, there is a family of defect states, bifurcating
from the zero state at each linear eigenfrequency of the linearized operator,
—02+v(x) and in the direction of the corresponding eigenfunction; see
ref. 17 for a general discussion.

Stability of Nonlinear Bound States. An important characteriza-
tion of the nonlinear bound states is variational. The advantage of the vari-
ational characterization is that it can be used to establish nonlinear stability
of the ground state; see refs. 17 and 22.

Theorem 1. (I) Nonlinear bound states can be constructed varia-
tionally by minimizing the Hamiltonian, 5#, subject to fixed L*norm, 4"

m‘jn Hlpl,  Nlel=p. 24

Such minimizers are called nonlinear ground states, Y(p). The associated
frequency, — A%(p), arises as a Lagrange multiplier for the constrained var-
iational problem (2.4). As p — 0, —A*(p) tends to the ground state eigen-
value of —92 + v(x).

(II) Ground states are H' nonlinearly orbitally Lyapunov stable, i.c.,
if the initial data are H' close to a soliton (modulo the phase and transla-
tion symmetries of GP/NLS), then the solution remains close to a soliton
in this sense for all ¢ € (—o0, 00).

Although, the above theorem establishes the ground state as a dynam-
ically stable state, it leaves unaddressed the question of detailed spatial
characteristics of the ground state. As we shall now see, dynamical systems
methods can, in some cases, be used to study this question globally and in
detail.
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3. NONLINEAR BOUND STATES—DYNAMICAL SYSTEMS
APPROACH

Dynamical systems methods are particularly well-suited to studying
the existence and nature of nonlinear bound states for the one-dimensional
problem (1.3), (1.4), since the equation is piecewise autonomous. In par-
ticular, we study

Y tev(x) Y =207 = -1 G3.1)

where v(x) = —d(x+ L)—d(x— L). With a quick apology for the following
non-physical substitutions, we rescale the variables as follows:

x=z/A
Y(x) = 9(Ax) = A4(2).

In these variables, we have

(3.2)

b= =20 =5 0(z/2) §.

This is equivalent to the following system with matching conditions:
z#+ AL P =¢p—2¢°
{ ¢(z") =¢(z7)
$'(z") =¢'(z7)—54(2),
where f(z*) =lim, , f(z+p) and ’ represents differentiation with respect
to z. As usual, we can convert a second order differential equation into a

pair of first order equations. In particular, if we let (v, w) = (¢, ¢), then we
have

=+iL

u=w

z#+AL { (3.3)
w=u—2u3

z=+4AL {u(z+) N u(zi) (3.9
w(z") =w(z7)—5u(z).

In the remainder of this paper, the dynamical systems terminology of
unstable manifolds, stable manifolds, homoclinic orbits, and periodic orbits,
see ref. 11, refers to structures in the phase plane of (3.3), i.e., the autono-
mous system that determines the evolution (in z) away from the defects.
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A search for bound states (standing waves) in this system can then be
undertaken as follows:

1. Since any standing wave must decay as z ——oo0, a potential
standing wave solution must originate (in the phase plane) along the global
unstable manifold W* of (0,0). Without loss of generality, we consider
only the portion of this manifold that lies in the first quadrant.

2. When this solution approaches the first defect at z=—AL", we
may shift z so that the point lim,__,;- (u(z), w(z)) can be chosen any-
where along the unstable manifold. (The value of u(—AL) can be thought
of as a shooting parameter.) At this chosen point, the solution jumps
vertically according to the matching conditions for w.

3. After completing the vertical jump at z = —AL, we again flow the
solution forward for “time” 2AL according to the ordinary differential
equation, until we approach the second defect at z = +AL.

4. When z=+L, the solution again jumps vertically in the phase
plane according to the matching condition. The phase plane solution that
we have been following represents a standing wave if and only if this second
jump lands our solution exactly upon the stable manifold W, in accor-
dance with the condition that u(z) — 0 as z — + c0.

For fixed values of the parameters €, 4 and L, it may happen that there
are multiple standing waves present, corresponding to different values of
the function at the first defect. In accordance with the search method
described above, the phase plane representations of such solutions are
shown in Fig. 2.

3.1. The Linear Limit; Infinitesimal Solutions

To illuminate this search for standing waves, it is instructive to first
consider the case of small amplitude solutions. For infinitesimal solutions,
we neglect the nonlinear term and we are left with the following linear
system

u=w
z#+ AL {

w=u

z=4AL

{u(z+) =u(z")

w(z") =w(z7) =5 u(z).

For the linear system, a bounded solution again grows from (0, 0)
along the unstable subspace, jumps to some transient at the first defect,
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Fig. 2. Various standing waves are found for e=1, L=2, and 1 =0.65. Here we see a
symmetric, an asymmetric and an antisymmetric wave.
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evolves further according to the linear system and then must jump exactly
to the stable subspace at the second defect in order to decay to (0, 0) as
z — 00. For a fixed value of L and € in this system, we can determine the
values of A for which standing waves exist. This is pursued below.

First, the unstable subspace at (0, 0) is given as the eigenvector of the

matrix
0 1
1 0

associated with the eigenvalue of positive real part. This is the vector (1, 1)
and so any point in the unstable subspace can be written as (¢, ¢).
Similarly, the stable subspace is spanned by the vector (1, —1). The jump at
the first defect is then J: (¢, ¢) = (¢, (1—73) ¢). Note that this jump will
take us to one of the interior transient curves (between the stable and
unstable subspaces in the right half plane) when 4> ¢€/2 and to one of the
exterior transient curves (below the stable subspace) when 1 <¢€/2.

In this infinitesimal amplitude limit, we can find the standing waves of
this system explicitly. Writing the landing point of the jump at the first
defect in terms of the eigenbasis yields

€ € €
(0.(1-5)#) =2 (1-5; ). D+o 5 1=

Because the system is linear in this limit, we ignore the @¢-terms from here
on. Evolving this point forward for time 2AL brings us to the point

€ € €
i ((11-5) ) =7 (| 175 | 0 D570 -0)

1 _€ | € gy
—[1 2/1]6 (1,1)+2ﬂ'e (1, -1)

_ <ezu_§ [e2_e 2], ezu_% [ezlL_i_e—Z/lL])‘
(3.5

Now, the solution we are tracing will represent a standing wave if and only
if this point is taken to the stable subspace of zero at the second jump. By
the jump conditions at z=+AL and the fact that points on the stable
manifold are of the form (¢, —¢), such points have the form

T W) = <¢, <§—1>¢>. (3.6)



890 Jackson and Weinstein

Checking to see if the point (3.5) is in this form yields the following equation
(e—7) <622L_% (ezlL_CZAL)>_/1 <ez/1L_2€_}L (e2lL+eML)> —0.

Some algebraic manipulation shows that this equation is equivalent to

1 +e

It may be more natural to consider 4 as a function of L rather than vice
versa; this would allow us to determine for which values of 4 (frequencies
— A?) stationary waves exist. This can be given implicitly as

A =§(1i€e’2’"“).

In particular, for A% to be real and positive, we need the argument of the
logarithm to be positive and therefore we have the following two solutions

1 €
O<ﬂ,<€/2 Lami=ﬂln <m> (37)

1
€/2<i<e Ly =3I <ﬁ> (3.8)

The antisymmetric solutions exist only for L>e™' because the function
L,.(1) is monotone increasing on [0, €e/2), with minimum value €~}
attained at A =0.

The two branches of solutions (symmetric and antisymmetric) are
shown in Fig. 3. The results are summarized in the following proposition:

Proposition 2. In the small amplitude limit, with the defects sepa-
rated by any positive distance L > 1/e, there exists a symmetric standing
wave with €/2 < A(L) < € and an antisymmetric wave with 0 < A(L) <¢€/2.
These states are unique (up to linear scaling) and no other standing waves
exist. Finally, for eL sufficiently large,

Jems (e, d,—i ~ee
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Fig. 3. A vs. L for e =1. For any value of the well-separation parameter L, there is a sym-
metric state for some €/2<1<e¢; for L>¢€™', there is an antisymmetric state for some
A<e/2.

3.2. Nonlinear Regime; Solutions with Larger Amplitude

For solutions with nontrivial amplitude, things get much more inter-
esting (as we have seen in our initial numerical search). Because of the
periodicity of the transient states, there are many possible solutions for this
system (especially for larger values of L). We show particularly that in
addition to the symmetric pulse (and the antisymmetric pulse, for L values
at which it exists) described above, there is also an asymmetric pulse that
bifurcates away from the symmetric pulse at a particular value of the boson
number A4". (These results follow for a focusing nonlinearity, g < 0. In the
defocusing case, g > 0, an asymmetric pulse can be seen to bifurcate from
the antisymmetric solution.)

For fixed values of the parameters L and €, we will consider what sorts
of positive-valued standing waves exist for varying values of A. These solu-
tions can be determined by adapting the previous search technique in the
following way:

1. For this system, the branch of the unstable manifold in the first
quadrant is given by the explicit expression

W ={(u,w):w=u./1—u*,0<u<1}. 3.9)

We now search for standing waves by evolving this entire curve via the
matching conditions and the evolution equation.
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2. For a particular value of A, application of the matching conditions
at the first defect yields the curve

J(W“)={(u, w):w=u(1/1— 2—%)}; (3.10)

see the lower dashed curve in Fig. 2.

3.  We then evolve this curve for “time” 2AL, yielding the curve
Ly (J(W™)).

4. Finally, we compare the evolved curve 7,,; (J(W*)) with the set of
points that jump to the stable manifold at the second defect, i.e.,

J‘l(Ws)z{(u, W) w=—u <«/1—u2—%>}. 3.11)

This agrees with (3.6) in the linear limit. Notice that the set J'(W*) is
simply the reflection of the set J(W*) through the u-axis. Each non-trivial
point of intersection of the two sets Ty, (J(W*)) and J~'(W*) represents a
standing wave of this system.

Remark 3. Because the curve J(W*) intersects many of the periodic
transients more than once, it seems plausible that there may be non-sym-
metric solutions for some values of L. We will make that clear by pursuing
the strategy above.

Proposition 4. Let € and L remain fixed. For all 1> A, (where
Asym 18 the value of A for which a symmetric solution exists in the linear
limit, as in (3.8)), there is at least one symmetric standing wave solution of

3.1).

Proof. This is a simple argument regarding the continuity of the
curves JI(W?*) and T, (J(W")). We consider only the portions of these
curves interior to the homoclinic orbit of the autonomous system. The
portion of J(W*) inside this loop has one endpoint at (0, 0) and the other
endpoint on the curve W in the lower half-plane; see Fig. 4.

For A > A, the initial portion of the curve T, (J(W*)) leaving (0, 0)
is between J~'(W*) and W* in particular, above the curve J~'(W*). This
follows from the explicit linear analysis of Section 3.1, that applies to this
portion of the curve. However, the other end must remain on the invariant
manifold W, and this manifold lies below the curve J}(W?*). Therefore,
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J WY and J7'wS

T27\L(

u —1\p/S
szL(JW yand J©'W

Fig. 4. For all values of 1> A, there is an intersection of Ty, (J(W*)) and J~'(W*)—and
such an intersection represents a standing wave. As A increases, more intersections may arise.

since T,; (J(W*)) is a continuous curve, it must intersect the curve J ~'(W*)
in at least one point. Therefore there is at least one standing wave in this
system for all A > A,,.

Finally, notice that if there is only one point of intersection, then the
standing wave corresponding to this intersection point will be symmetric
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with respect to z. This follows from the reversibility of the autonomous
portion of the evolution equation, (3.3). ||

Knowing that one or more standing waves exist, we now look into the
forms that such waves take. In the following, we will look for symmetric
standing waves that are concentrated at the defects; in particular, we hope
to find profiles that achieve their maximum values at the two defects. We
take a slight change of view in the following, considering € and A as fixed
and asking for which values of the spacing parameter L do such standing
waves exist?

Proposition 5. Let € and 4 be fixed parameters. There is a symme-
tric solution concentrated at the defects in each of the following regimes:

1. For <A<g, there is such a solution for all L> L, (4)=
5 In(55).
2. Fore< 1<./2¢, there is such a solution for all values of L.

3. For A=./2¢, there is such a solution for all L > L (3+tan""' 2).

Proof. We will prove this proposition by considering the amount of
“time” it takes each point on the curve J(W*) (from the point where the
curve enters the lower half plane until it meets the manifold W*) to reach
its reflection on the curve J!(W?). For fixed value L, we show there is a
point on J(W*) that is mapped to its reflection on J~'(W*) in time 2AL.
We can define the function L(u) as the “time” it takes the solution begin-

ning at a point (u, u(\/1—u?—¢€/A)) (meeting the previous parenthetical
requirement) to reach the symmetric point (u, —u(\/1 —u*—¢€/1)).

1. The result follows quickly in the regime 5 < A <e, by noting that
as u— 0%, L(u) - L, as given in the earlier proposition. Also, as u —
(/1—=(e/22)%~, L(u4) — 0. A continuity argument completes this case.

2. Fore<i<,/2¢€ the curve J(W*") leaves the origin into the upper
half plane. It reaches the wu-axis when u=./1—(e/1)* and reaches the
stable manifold W* when u=.,/1—(e/24)% In this regime, it is clear that
Lu)-»0asu— (/1—(e/)H* and L(u) > 0 as u = (/1 —(e/21)*)".

3. When A= ﬁ €, the curve J(W*) crosses the u-axis at the elliptic

fixed point (1/ ﬁ , 0). A careful study of the linearization near this fixed
point reveals the lower limit given above. |

Now we note an important consideration concerning the form of these
symmetric pulses. In particular, for fixed values of the parameters € and 4,
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the curve J(W*) is tangent to exactly one of the periodic orbits in the phase
plane. And there is a distinguished value of the parameter L that corre-
sponds to a symmetric standing wave that jumps to (and from) this point
of tangency at each of the defects. The u-value at this point of tangency can
be quickly computed,

) _\/12—(;)2—;,/12+(;)2
thresh —

18

and the corresponding threshold value of L, call it L., can then be
determined simply by noting the “time” it takes to flow from (g ech> Witresh)
to its reflection (g esh> —Winresh )-

In Fig. 5, we show the energy of the symmetric standing wave at the
threshold values of L. We will now show that beyond this threshold, there
is a pair of asymmetric standing waves (in addition to the symmetric and
antisymmetric waves discussed previously). An example displaying the
forms of the symmetric and bifurcating asymmetric standing waves is given
in figure 6.

stable asymmetric
ground states

Nthresh

0.5F

stable symmetric
ground states

0

0 1 é (IB 4
L
Fig. 5. Threshold values of the particle number A, for varying values of L are shown. At

these threshold values, there is a bifurcation of asymmetric pulses (see Proposition 6) and
beyond these values, the symmetric standing wave will be unstable (see Theorem 8). The point

along the curve marked with a solid circle corresponds to the special value 1 = \/5 €, where
the point (¢, 0) is the fixed point in the phase plane. Along the curve to the right of this
point, the symmetric standing waves at threshold have the desired two peak profile; to the left,
the symmetric standing waves at threshold have a single peak centered between the two
defects.
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Proposition 6. Let € and A remain fixed, with A>¢/2. For
L> Ly...(4), there exists a pair of non-symmetric standing waves. These
waves leave the symmetric wave in a pitchfork bifurcation at L = L ..

Proof. Consider € and A fixed and positive, with A >¢€/2 and L so
that L > Lg,..,(4). For such a value of L, there is a symmetric standing
wave. And because the function L(u) (defined in the proof of the previous
proposition) is continuous with L(#) & Ly @S U = Uy and L(u) — o0
as u— /1—(e/24)* -, we can find such a symmetric standing wave
approaching some point (u,, w,) as z > — AL™ where u, > uy,.,. And since
Uy > U, this wave must pass through J~'(W¥) in the phase plane before
reaching the terminal point at the second defect.

In the phase space, the part of the standing wave between the two
defects can be written as the curve

Iy = {T,((u, wy)): 0 < z < 2AL}.

Note that the curve I, simply traces out the portion of the periodic orbit
connecting the symmetric points (u,, wy) and (uy, —w;).

We consider an arbitrary parameterization (u,, w,), 7€ [0, 1] of the
portion of the curve J(W*) between (u,, w,) and its nontrivial intersection
with the stable manifold W, so that (u,, w,) is as above and (u,, w;) € W".
Then we can define

I ={T.((u,, w,)): 0< z < 2AL},

for all € [0,1]. J '(W*) is transverse to all of the periodic orbits away
from the point #,.,. And since uy > Uy, if @ curve I, crosses J (W), it
must do so transversely.

Recall that the curve I, crosses J '(W*) prior to its terminal point
at the second defect. (This earlier crossing does not represent a standing
wave, of course, since it occurs for a value of z not corresponding to a
defect, i.e., z# 2AL.) On the other hand, for 7 sufficiently close to 1, the
curve I, no longer reaches J }(W?*) even once. Continuity considerations
therefore dictate that there must be a value of 7 between 0 and 1 so that
T ((u,, w,)) lies on the curve J~'(W*). This value represents a standing
wave, but this state is clearly not symmetric since uy > #y,eq,, While the first
point of intersection must be smaller than u,,., .

There is a second non-symmetric standing wave that, in the phase
plane, has the form of the wave just found reflected across the u-axis.

This pair of non-symmetric solutions is originally produced in a pitch-
fork bifurcation when L= Ly . To see this more clearly, consider the
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The solution u(z)
0.26 T T T T T T T T T

024 A=0.575
022

0.2

0.08

0.06 ! ! ! ! ! ! ! ! !
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Symmetric and asymmetric waves u(z)
0.7 T T T T T

A =0.65

0.6 B

0.4

0.3

01

0 L L L L L
-3 -2 -1 0 1 2 3

Fig. 6. The solutions corresponding to the various intersection points from the phase plane
diagram in Fig. 4 are shown here.

curve Ty, (J(WY)), ie., the evolution of the curve J(W*) for “time”
2L .., Because the curve J(W*) is tangent to the flow at the point
(Uthresh» Winresn )> 1t 18 also true that the evolved curve T,  (J(W")) is
tangent to the flow at the point (Uyyesn, —Winresh)- And so, at this point,
T, (J(W*) is tangent to to the curve J '(W*). As L passes through
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Ly, these two curves pass through tangency, and the additional inter-
sections appear in the same way that additional real roots of x*—ux=0
appear as u passes through zero. ||

4. THE EIGENVALUE PROBLEM AND STABILITY

In the previous section, we found various standing wave solutions of
the equation

i, =~y —2 WI* ¥ +ev(x) ¥

where v(x) is the double well potential —Jd(x— L) —J(x+ L). In this section,
we will analyze the stability of the various branches of solutions con-
structed, by studying the eigenvalue equation, associated with linearization
about a fixed nonlinear bound state.

Let u(x) be any real-valued standing wave. First we change coordi-
nates into the frame of the standing wave

W(x, 1) = e P(x, 1)

and arrive at the equivalent equation

i, =~ +[2°— 2|4 +ev(x))] ¢. 4.1

We write this equation in real and imaginary parts (¢ = {+iy)

(= —no—[2+n") +ev(x) ] n+ A’y
mo=Cat+[2C+n")+en(x)]{-2%,

and formally consider small perturbations of the standing wave. Since the
standing wave is real-valued, we can write ({(x, ?), #(x, ¢)) = (u(x), 0) +
o(p(x, 1), g(x, t)), with d small. Considering only the leading order terms in
0 yields the linearized dynamics

@.2)

P = —qu—[20°+ev(x)] g + A%q,
4= Puot[20+ev(x)] p+4u’p—Ap.
Setting

2

L ==
- dx?

+[2u*+ev(x)]— A%,

2

d
L, = = [2u*+ev(x)] +4u*>— 1%,
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Eq. (4.2) can be rewritten as the system

(eh-(e 0~

g/t \L, 0 q q

Of interest is the spectrum of this operator N. For the ground state (see
Section 2), the spectrum of N lies entirely on the imaginary axis and,
modulo zero modes associated with symmetries, exp(¢N) is bounded on H'!
and indeed, the solution is nonlinearly stable.-2"

A state is unstable if one can exhibit an eigenvalue of the operator N
with positive real part. Nonlinear instability is a consequence; see the
appendix of ref. 10. Unfortunately, even though the spectrum of L, and
L_ can, in principle, be determined using Sturm—Liouville theory, it is not
obvious how to construct the spectrum of N using this information.
However, this is exactly the operator studied by Jones in ref. 12, in an
application to optical pulses in nonlinear waveguides. In that work, Jones
interprets the search for a real positive eigenvalue as a shooting problem in
the space of Lagrangian planes. Using a winding argument in this space, he
derives a relationship between the number of positive eigenvalues of the
simpler operators L, and L_ and the number of positive eigenvalues of N.
Let

P =number of positive eigenvalues of L, and

Q = number of positive eigenvalues of L_.

Then we have:?

Theorem 7. If P—Q#0, 1, there is a real positive eigenvalue of
the operator N.

An alternative, PDE approach to this result was developed by
Grillakis.

From Sturm-Liouville theory, P and Q can be determined by consid-
ering the behavior of solutions of L, p=0 and L_qg =0, respectively. In
particular, P and Q equal the number of nodes of the associated solutions
p and ¢q. Since L_qg =0 is satisfied by the standing wave u(x) itself, it
quickly follows that

Q = number of zeros of the standing wave u(x).

For all positive-valued pulses, then, 0 = 0.
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So we have that if P> 1, then N has a positive eigenvalue and the
standing wave u(x) is unstable. The operator L, acts as the equation of
variations for (3.3), and a natural interpretation of the equation of varia-
tions is that it carries tangent vectors under the flow. So if we initialize p(x)
as a vector tangent to the unstable manifold W* and pointing in the direc-
tion of the flow, then we can calculate P by counting the nodes of the
resulting solution p(x).

In the context of vectors, a node of p(x) is a vector in the phase plane
pointing straight up or down. And so, P can be computed by counting the
number of times that the vector initialized tangent to the unstable manifold
passes through verticality. In particular, considering only the angle of this
vector and not its magnitude, P corresponds to the largest number of
integer multiples of n through which this vector rotates as it is evolved
under the linearized flow.

The only difficulty in the computation is this: because of the jumps at
the defects, i.e., the inhomogeneity of the evolution equation, a vector p(x)
initialized tangent to the nonlinear bound state solution will not remain
tangent to this solution once we reach the first defect.

However, using the simple matching conditions for these vectors at the
defects, we can prove the following theorem:

Theorem 8. For L < L., the symmetric solution has P < 1. For
L> L., the symmetric solution has P > 2. Therefore, after the bifurca-
tion of the asymmetric waves, the symmetric wave is unstable.

Proof. The result follows simply by evolving a vector p(x) (ini-
tialized to be tangent to the upper branch of the homoclinic and pointing
in the direction of the flow) around each standing wave under the influence
of the real equation of variations. This can be visualized by noting that, at
the first defect, the tangent vector to the unstable manifold W is taken to a
vector that is tangent to the curve J(W*). The observation of instability is
then reduced to simply noting the manner in which this landing curve
J(W™) intersects the periodic orbit (representing the standing wave between
the defects) in the phase plane.

1. At the threshold value L = L., itself, the curve J(W*) is tangent
to the periodic orbit to which the solution jumps at the first defect. The real
variational solution p(x), then, will still be tangent to the transient solution
(although now pointing backwards). Hence, we can continue to trace the
solution exactly by following the tangent vector around this transient to
the second defect. Then, as symmetry dictates, p(x) is then taken to a
vector tangent to W* at the second defect. p(x) is seen to pass through
verticality only once (at x = 0) and hence has P = 1.
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2. For L < Ly,, the vector p(x) jumps through a smaller angle at
each defect than it does at the bifurcation point itself. After the first defect,
it then points along the curve J(W*), which in this case points info the
elliptical periodic orbit. Because solutions are unique, the tangent vector to
this periodic orbit provides a bound for our solution as it evolves, and the
vector p(x) must retain its orientation with respect to the tangent to the
periodic orbit; in particular, it rotates clockwise and must still be pointing
into the periodic orbit at the second defect. However, the vector that is
taken to the curve W at the second defect is the vector tangent to J ~}(W*),
and comparing this vector to p(x) we quickly see that P < 1 in this case.

3. For L > Ly, the vector p(x) jumps through a larger angle at the
first defect and now points along J(W*) down and out of the periodic orbit,
and so the tangents to this elliptical curve now provide a bound on the
other side. At the second defect, the solution must still point out of the
closed curve and comparison with the vector tangent to J '(W*) forces
P =2 in this case.

These three cases are sketched in Fig. 7. |

APPENDIX A. WELLPOSEDNESS OF GROSS-PITAEVSKII/NLS

Structural Properties of NLS. The Gross—Pitaevskii/NLS equation
is a Hamiltonian system, which can be written in the form:

i, =2 Aoplu, 7, (A1)
ot

where #5p[u, ii] denotes the Hamiltonian (1.5). Invariance with respect to
time-translations implies that #5p[u, @] is conserved by the flow generated
by (A.1). Additionally, invariance under the transformation ui— ey,
& e R implies that A [u, it], the L*> norm defined in (1.6), is conserved.

For the spatially translation invariant case, NLS has the Galilean
invariance:

u(x, 1) > u(x—st, £) €30, se R (A.2)

Well-Posedness Theory. We present a sketch of the existence and
uniqueness of solutions to (1.3); see also ref. 9. The functionals #p[ - | and
N[ -] are well defined on H'(R"), the space of functions f, for which f
and 0, f are square integrable. It is therefore natural to construct the flow
for initial data of class H!. In fact, it can be shown that, for initial conditions
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0.4

0.2

02

(‘) 0.2 0.4 0.5
Fig. 7. The evolution of the tangent vector is shown for solutions with L = L g,

L <Ly, and L> Ly ... The vector’s additional rotation of z for L > L, ., indicates the
instability of that standing wave.
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u, = u(x, t =0) € H'(R"), there exists a unique global solution of NLS, u €
C°(R'; H'(R)), in the sense of the equivalent integral equation:

u(t)=U(t) uy+2i L: U(t—s) |u(s)|* u(s) ds, (A.3a)

U(t) = exp(—iH1), =—02+v(x). (A.3b)

The spectral decomposition of H is known explicitly® and can be used to
construct U(?) explicitly.

To show the existence of a solution to (A.3a) in H'!, we must show
the existence of a C°(R!; H'(R)) fixed point of the mapping u(x,t)—
J[u](x, t), given by the right hand side of (A.3a).

We now outline the key ingredients of the proof. To bound J[u«] and
its first derivative in L2 we introduce the operator o/ = (I + H)P,, where
P, denotes the projection onto the continuous spectral part of H. Note
that o/ is a nonnegative operator, since the continuous spectrum of H is
the nonnegative real half-line. Moreover, we expect |.&/ 2 I~ N1fllz =
({04 —ai)% fllzz. In fact, we shall use that the following operators are
bounded from L? to L%

S-S A=)

This follows from the boundedness of the wave operators on H'.*” There-
fore, we have an equivalence of norms

Cilf e <122fll2 < Co IS Nl (A.4)

Our formulation (A.3a) and introduction of ./ are related to the nice
property that o/, and hence also functions of &/, commute with the
propagator exp(—iHt). We shall also use the Sobolev inequality:

£GP < C ISz 10, 122 (A.5)

and the Leibniz rule:™®

=82 (DI < CAUS = IT—82) gll2+ 1T —82)* £,z gl=)- (A.6)

Since U(¢) is unitary in L?, we have

1 1 t 1
o 2T [udll 2 < |l *uoll 2+ L llo2* |u(s)|* u(s)|l> ds

— I gl 7 [ AU =02 (=8 () w2 ds.
(A7)
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By (A.4), (A.5), and (A.6),

WTulOllm < C T [ulll2 < Cy luollgt +CoT sup Ju(s)lz.  (A8)

se[0,T]

Now assume that u is such that sup,. o 7y [|u(s)|z* < 2C,. Then, by (A.8),
choosing T' < T; sufficiently small, sup; o 77 [J[#1(s)]|z < 2C |luollz and
so

IV Lu](Olla < Ci lluollz +CT(2C, ||u0||H1)3‘

It follows that for 0 < T < T, sufficiently small, the transformation J[ -]
maps a ball C%([0, T]; H'(R)) into itself. A similar calculation shows that

I Tul(®) = I[0I(Ollat < KTQ2C, lugllz)® sup lu(s)—v()lla, (A9

se[0,7T]

and therefore for 0 <7 < T, < T;, the transformation J[ - ] is a contraction
on this ball. Therefore, J[ - ] has a unique fixed point in C°([0, T]; H'(R))
for T sufficiently small and local existence in time of the flow follows.
Global existence in time follows from the a priori bound on the H' norm
of the solution implied by the time-invariance of L? norm, .4#", and the
Hamiltonian, #p.
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